Opposite regulation of myc and p21waf1 transcription by STAT3 proteins.
نویسندگان
چکیده
Activated forms of STAT3 transcription factors are often found in various cancers and tumor cell lines, indicating that this signaling pathway is involved in tumorogenesis. At the molecular level, STAT3 proteins function as transcriptional activators and up-regulate several growth-promoting genes such as myc, pim-1, or cyclin D1. However, these transcription factors have also proapoptotic functions and can activate the expression of the cell-cycle inhibitor p21(waf1), suggesting that STAT3 can also block cell-cycle progression and prevent abnormal cell proliferation. To reconcile these observations, one would predict that the STAT3-mediated activation of p21(waf1) is lost during cell transformation. In this study, we show that upon IL-6 stimulation of glioblastoma cells, STAT3 does not activate the expression of the p21(waf1) gene, whereas the expression of the myc gene remains unaltered. Chromatin immunoprecipitation experiments show that STAT3 and its cofactor NcoA/SRC1a are effectively recruited to the p21(waf1) promoter but that this is not followed by the association of the CREB-binding protein (CBP) histone acetylase and the type II RNA polymerase as normally seen on the myc promoter. Whereas the PI-3K/Akt pathway is constitutively activated in these cells, inactivation of this pathway restores the loading of CBP and the RNA polymerase and the expression of the p21(waf1) gene without having any effect on myc regulation. Moreover, this effect was recapitulated in HepG2 cells expressing an activated form of the Akt kinase. In these cells, the kinase blocked the STAT3-mediated expression of the p21(waf1) gene by inhibiting the recruitment of CREB-binding protein and the type II RNA polymerase, without having any effects on the loading of STAT3 and its cofactor NcoA/SRC1a. Together, these findings suggest that the phosphatidylinositol 3-kinase/Akt pathway inhibits the transcriptional activation of the p21(waf1) gene by STAT3 proteins without altering the regulation of the myc promoter.
منابع مشابه
Src inhibits adriamycin-induced senescence and G2 checkpoint arrest by blocking the induction of p21waf1.
DNA-damaging drugs stop tumor cell proliferation by inducing apoptosis, necrosis, or senescence. Cyclin-dependent kinase inhibitor p21waf1 is an important regulator of these responses, promoting senescence and preventing aberrant mitosis that leads to cell death. Because tumors expressing oncogenic tyrosine kinases are relatively resistant to DNA-damaging agents, the effects of Src on cellular ...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملStat3 and c-Myc Genome-Wide Promoter Occupancy in Embryonic Stem Cells
Embryonic stem (ES) cell pluripotency is regulated in part by transcription factor (TF) pathways that maintain self-renewal and inhibit differentiation. Stat3 and c-Myc TFs are essential for maintaining mouse ES cell self-renewal. c-Myc, together with Oct4, Sox2, and Klf4, is a reprogramming factor. While previous studies have investigated core transcriptional circuitry in ES cells, other TF pa...
متن کاملLIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism.
Murine ES cells can be maintained as a pluripotent, self-renewing population by LIF/STAT3-dependent signaling. The downstream effectors of this pathway have not been previously defined. In this report, we identify a key target of the LIF self-renewal pathway by showing that STAT3 directly regulates the expression of the Myc transcription factor. Murine ES cells express elevated levels of Myc an...
متن کاملSTAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell
Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 5 شماره
صفحات -
تاریخ انتشار 2003